Population pharmacokinetics of clobazam and its active metabolite in pediatric patients with epilepsy: Effect of weight, genotype and co-therapy.

Manisha Lamba (1), Richard C. Brundage (1), Stephen P. Wanaski (2), Katherine A. Tracy (2), Stephen D. Collins (2), Angela K. Birnbaum (1).

(1) Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USA; (2) Ovation Pharmaceuticals, Inc., Deerfield, IL, USA.

Objectives: The aim of this analysis was to characterize a population model of clobazam (CLB) and its active major metabolite, N-desmethyloclobazam (N-CLB) in a target population of pediatric patients with Lennox-Gastaut syndrome following oral administration of CLB.

Patients and Methods: Data were from a dose-ranging Phase-II, randomized, double-blind, efficacy and safety trial in pediatric patients and young adults with Lennox-Gastaut Syndrome (LGS). This 11-week study included a 4-week baseline period, 3 weeks of dose titration, and 4 weeks of maintenance dosing. Randomization was done within 6 weight groups to either low dose (0.25 mg/kg/day) or high dose (1.0 mg/kg/day); CLB was administered twice daily. Patients were allowed up to 3 concomitant antiepileptic drug (AED) medications. Plasma drug and metabolite concentrations were available from week 5 and week 7 of study. One plasma sample at steady-state was collected per visit at a time that was convenient to patients. Data were fitted using NONMEM (version V, level 1.1, ADVAN 5), with FOCE INTERACTION method used for estimation. Due to sparse data early post-dose, covariate screening was performed only for apparent clearance (CL/F). An allometric model in which weight was standardized to a 70-kg adult was used for clearance of CLB and N-CLB. This was followed by exploration of other covariates including age, concomitant therapy with felbamate, lamotrigine, or valproic acid; CYP2C19 genotype (normal/poor metabolizers), and gender.

Results: 204 total plasma concentrations of CLB and NCLB were available from 56 patients. A 1-compartment model in which the absorption rate constant was fixed to 2.5 /hr and a first-order conversion of CLB to N-CLB was assumed. A proportional error model for residual variability and exponential model for inter-subject variability were deemed appropriate. For CLB, population standardized CL/F was 5.94 L/hr/70kg (RSE 6.97%); volume of distribution estimate was 95.8L (34.4%). The apparent volume of distribution of N-CLB was fixed to that of CLB while population standardized clearance was estimated to be 1.15L/hr/70kg (10.4%). After accounting for weight, clearance of CLB and N-CLB did not appear to be further influenced by age in pediatric patients and young adults. No other covariates were found to be significant for CL/F of CLB. Concomitant therapy with felbamate and poor CYP2C19 metabolic status were associated with reduced apparent clearance of N-CLB by 45% (55%) and 48% (29.5%) respectively.

Conclusions: Pediatric estimates of CLB CL/F after standardizing to a 70 kg adult were almost twice higher than adults. This interesting finding suggests CLB is more extensively metabolized in children. A similar finding in children has been reported previously. Estimates of standardized N-CLB clearance were comparable to adults. The lower clearance of N-CLB relative to CLB supports its elimination-rate limited disposition and higher accumulation ratio as reported previously. High inter-patient variability in CLB and N-CLB clearance (48% and 72% respectively) is in agreement with results in adult healthy volunteers. However, inclusion of genotype and concomitant AED therapy reduced variability in N-CLB clearance from 88% to 72%.

References:
(3) Kosaki K et al., Brain & Development (2004) 26: 530-534